5) Install metal drip edge at all eaves and rakes to shed water and keep wind-driven rain out.

4) Seal roof deck, which helps keep water out if the roof cover is blown off or damaged. Install a waterproof ice barrier at the roof eaves in cold weather locations with a history of ice dams.

3) Re-fasten the roof deck (staples are not permitted, ring shank nails are ideal).

2) Inspect the roof deck for damage, replace damaged sections to provide a durable nailing surface.

1) Remove the original roof covering and underlayment to expose the roof deck. Only one layer of roof covering is permitted.

*Earning a Bronze designation may require additional retrofits, which may include but are not necessarily limited to changing soffits, protecting gable wall vents, and securing gable overhang outlookers.

The roof is your home’s first line of defense against many natural disasters. The FORTIFIED™ Designation focuses on improving the roof’s durability and performance in these conditions. Disaster safety research found water damage from a hole caused by roof decking that wasn’t properly attached can cost nine times as much as the cost of fixing the hole. You are already investing in a new roof, having a FORTIFIED™ roof ensures you are getting maximum performance for your hard earned dollars.

Your roof is a system that consists of much more than just shingles. There are several additional components all working to help protect your home from the ravages of Mother Nature.

Where Do I Start?

A Bronze designation is the entry level designation for the FORTIFIED Home™ program, and often the most affordable to achieve, especially when re-roofing. Apply online at disastersafety.org/fortified, where you will find an IBHS certified evaluator to inspect your home and identify needed improvements to qualify for Bronze. IBHS will verify the improvements have been made before awarding the designation. This process helps protect your investment in your new roof as well as the rest of your home.

Essential Components of a FORTIFIED™ roof.

1) Install new high wind and impact-rated roof covering per the manufacturer’s installation requirements.

2) Install flashing.

3) Install metal drip edge at all eaves and rakes to shed water and keep wind-driven rain out.

4) Sealed roof deck, which helps keep water out if the roof cover is blown off or damaged. Install a waterproof ice barrier at the roof eaves in cold weather locations with a history of ice dams.

5) Install metal drip edge at all eaves and rakes to shed water and keep wind-driven rain out.

6) Install flashing.

7) Install new high wind and impact-rated roof covering per the manufacturer’s installation requirements.
NOTE:
In cold weather areas with a history of ice dams, a waterproof ice barrier should be installed in lieu of normal underlayment from the lowest edges of all roof surfaces to a point at least 24 in. inside the exterior wall line of the building.

5. WHY ANCHOR GABLE END OUTLOOKERS?
Outlookers are roof framing members often used to support the roof overhang at the gable end of a house. Inadequately attached outlookers can lead to roof failures in high wind.

6. WHY SEAL THE ROOF DECK?
This will help keep water out of the house if the roof cover is damaged or blown off. Large amounts of wind-driven rain can enter the attic through unsaied gaps between pieces of roof sheathing. IBHS defines a properly sealed roof deck as one where seams or gaps between pieces of decking are sealed.

Install 4”-6” wide “peel and stick” tape installed over all the wood roof panel seams, covered by a 30# felt underlayment over the entire roof; Install a “peel and stick” membrane over the entire roof deck;

Below are some simple explanations why these roofing improvements are important. Detailed guidance for completing these steps is available in the IBHS guide, “Roofing the Right Way,” at DisasterSafety.org.

1. WHY REMOVE TREE BRANCHES THAT OVERHANG THE ROOF?
Overhanging tree branches represent a higher risk during high wind weather events, primarily due to limbs falling on the roof.

2. WHY REMOVE THE ROOF COVER?
Exposing the roof deck allows for a good inspection and provides an opportunity to strengthen connections between roof deck and roof structure. It also provides a smooth solid foundation for installing a high-wind and impact-resistant roof cover. Multiple layers of finished roofing are not permitted under the FORTIFIED™ program.

3. WHY INSPECT FOR DAMAGE?
A damaged roof deck will weaken your roof, which can expose your home to wind and wind-driven rain. Have damaged sections replaced with materials of the same thickness.

4. WHY RE-NAIL THE ROOF DECK?
Proper fastening will ensure the roof deck stays in place and protect your property by keeping wind and water out. The decking should be secured with #10 ring Shank nails, spaced 6 in. on center, along all framing members. IBHS research shows use of staples and the minimum sized smooth nails allowed in older building codes, regardless of the spacing, are inadequate to keep a roof deck on in high winds.

4”-6” wide “peel and stick” tape and a felt installed over all the wooden roof panel seams, covered by a 30# felt underlayment over the entire roof.

5. WHY RE-NAIL THE ROOF DECK?
Proper fastening will ensure the roof deck stays in place and protect your property by keeping wind and water out. The decking should be secured with #10 ring Shank nails, spaced 6 in. on center, along all framing members. IBHS research shows use of staples and the minimum sized smooth nails allowed in older building codes, regardless of the spacing, are inadequate to keep a roof deck on in high winds.

7. WHY INSTALL FLASHING?
Flashing is necessary to help prevent leaks. It should be installed anywhere the roof changes slope, intersects with vertical surfaces, in roof valleys, around openings, and at eaves and gable rakes. Valley areas without flashing are especially vulnerable to leakage.

8. WHY INSTALL A HIGH-WIND AND IMPACT-RESISTANT ROOF COVER?
Your roof covering is the first line of defense against wind-driven water. High winds and hail can damage the roof cover and allow water to enter the attic, causing substantial losses. In hail-prone areas, where the design wind speed does not exceed 110 mph, ask your roofer for an asphalt shingle that meets these requirements:

Install a high tear strength synthetic underlayment with all vertical and horizontal seams taped.

NOTE: In cold weather areas with a History of ice dams, a waterproof ice barrier should be installed in lieu of normal underlayment from the lowest edges of all roof surfaces to a point at least 24 in. inside the exterior wall line of the building.

5. WHY INSTALL FLASHING?
Flashing is necessary to help prevent leaks. It should be installed anywhere the roof changes slope, intersects with vertical surfaces, in roof valleys, around openings, and at eaves and gable rakes. Valley areas without flashing are especially vulnerable to leakage.

8. WHY INSTALL A HIGH-WIND AND IMPACT-RESISTANT ROOF COVER?
Your roof covering is the first line of defense against wind-driven water. High winds and hail can damage the roof cover and allow water to enter the attic, causing substantial losses. In hail-prone areas, where the design wind speed does not exceed 110 mph, ask your roofer for an asphalt shingle that meets these requirements:

Install a high tear strength synthetic underlayment with all vertical and horizontal seams taped.

NOTE: In cold weather areas with a History of ice dams, a waterproof ice barrier should be installed in lieu of normal underlayment from the lowest edges of all roof surfaces to a point at least 24 in. inside the exterior wall line of the building.

7. WHY INSTALL FLASHING?
Flashing is necessary to help prevent leaks. It should be installed anywhere the roof changes slope, intersects with vertical surfaces, in roof valleys, around openings, and at eaves and gable rakes. Valley areas without flashing are especially vulnerable to leakage.

8. WHY INSTALL A HIGH-WIND AND IMPACT-RESISTANT ROOF COVER?
Your roof covering is the first line of defense against wind-driven water. High winds and hail can damage the roof cover and allow water to enter the attic, causing substantial losses. In hail-prone areas, where the design wind speed does not exceed 110 mph, ask your roofer for an asphalt shingle that meets these requirements:

Install a high tear strength synthetic underlayment with all vertical and horizontal seams taped.